
2세부

프로퍼티그래프질의처리엔진

(세부2) 초거대그래프의지능적고속처리를위한그래프 DBMS 기술개발

Property Graph

 Property Graph?
 A graph composed of nodes and relationships, where every 

node/relationships can have their own properties (key-values)

 Difference with Relational Data
 Schema

 All tuples in a table (of RDBMS) have the same schema

 In GDBMS, there is no constraint on schema by default

 Relationships

 GDBMS efficiently manages relationships between nodes, 
empowering ability to traverse between nodes

Why Graph DBMS?

Location 1

Customer 1

Supplier 1 Product 1

Order 1

Location
1

Order 
1

Product
1

Customer
1

Supplier 
1

Location 2

Location
2

PURCHASED

RESIDES

✓

✓

✓

✓

✓

✓

Limitations of the Existing GDBMS

 Inefficient Graph Query Processing
 Non-native graph storage

 RDBMS: Oracle PGX Spatial Graph, SAP HANA Graph

 Document Store: Azure Cosmos DB

 Absent of the worst-case optimal join

 Schema-less data processing (Neo4J)

 Limited Scalability
 In-memory Graph Query Processing (Oracle PGX)

 Do not support distributed, parallel query processing (Neo4J, Amazon 
Neptune)

Our Ultimate Goals

 100x performance improvement compared to the state-of-the-art 
commercial DBMS

 Supports flexible yet very fast schemaless computation

 A versatile DBMS for covering various, analytic workloads
 Would even significantly outperform state-of-the-art RDBMSs for 

relational-friendly queries such as TPC-H or TPC-DS

TurboGraph-v3.0 vs Neo4J

TurboGraph-v3.0 Neo4J

Native Graph Store O O

Execution Model
Push-based Pipeline 

(Many opt. opportunities)

Volcano, Pull-based

Pipeline

Storage Format
Schemaless Columnar

Format (Flexible, Fast)

Schemaless Row-major

Format (Slow)

Type Inference
Extent-level (Fast)
* Extent = a fixed-size set of tuple

s with similar schema

Vertex/Edge-level (Slow)

Distributed execution 

of the single query
O X

Worst-case optimal 

query optimization
O X

Execution Engine

 Cache Manager
 Implemented with a open-source in-memory object store, where 

multiple processed can access cached data via shared memory

 Can cache variable-length data

 Catalog Manager
 Manages information for the system catalog

 Extent Manager
 Can create/delete and iterate extents

 The storage APIs called from the execution engine can scan/seek data 
via Extent Manager

Main Components of the Storage

 Vectorized, push-based execution model
 Compared to traditional pull-based model, push-based model 

provides cache efficiency and is also much natural to parallelize query 
without much alteration

 We currently adapt expression evaluation component from that of 
DuckDB (a portable, high-speed HTAP database), but are planning 
to eventually replace them to generate LLVM IR codes

빅데이터 분석 및 AI 처리를 위한 클라우드向 차세대 DBMS 기술


