
2세부

프로퍼티그래프질의처리엔진

(세부2) 초거대그래프의지능적고속처리를위한그래프 DBMS 기술개발

Property Graph

 Property Graph?
 A graph composed of nodes and relationships, where every 

node/relationships can have their own properties (key-values)

 Difference with Relational Data
 Schema

 All tuples in a table (of RDBMS) have the same schema

 In GDBMS, there is no constraint on schema by default

 Relationships

 GDBMS efficiently manages relationships between nodes, 
empowering ability to traverse between nodes

Why Graph DBMS?

Location 1

Customer 1

Supplier 1 Product 1

Order 1

Location
1

Order 
1

Product
1

Customer
1

Supplier 
1

Location 2

Location
2

PURCHASED

RESIDES

✓

✓

✓

✓

✓

✓

Limitations of the Existing GDBMS

 Inefficient Graph Query Processing
 Non-native graph storage

 RDBMS: Oracle PGX Spatial Graph, SAP HANA Graph

 Document Store: Azure Cosmos DB

 Absent of the worst-case optimal join

 Schema-less data processing (Neo4J)

 Limited Scalability
 In-memory Graph Query Processing (Oracle PGX)

 Do not support distributed, parallel query processing (Neo4J, Amazon 
Neptune)

Our Ultimate Goals

 100x performance improvement compared to the state-of-the-art 
commercial DBMS

 Supports flexible yet very fast schemaless computation

 A versatile DBMS for covering various, analytic workloads
 Would even significantly outperform state-of-the-art RDBMSs for 

relational-friendly queries such as TPC-H or TPC-DS

TurboGraph-v3.0 vs Neo4J

TurboGraph-v3.0 Neo4J

Native Graph Store O O

Execution Model
Push-based Pipeline 

(Many opt. opportunities)

Volcano, Pull-based

Pipeline

Storage Format
Schemaless Columnar

Format (Flexible, Fast)

Schemaless Row-major

Format (Slow)

Type Inference
Extent-level (Fast)
* Extent = a fixed-size set of tuple

s with similar schema

Vertex/Edge-level (Slow)

Distributed execution 

of the single query
O X

Worst-case optimal 

query optimization
O X

Execution Engine

 Cache Manager
 Implemented with a open-source in-memory object store, where 

multiple processed can access cached data via shared memory

 Can cache variable-length data

 Catalog Manager
 Manages information for the system catalog

 Extent Manager
 Can create/delete and iterate extents

 The storage APIs called from the execution engine can scan/seek data 
via Extent Manager

Main Components of the Storage

 Vectorized, push-based execution model
 Compared to traditional pull-based model, push-based model 

provides cache efficiency and is also much natural to parallelize query 
without much alteration

 We currently adapt expression evaluation component from that of 
DuckDB (a portable, high-speed HTAP database), but are planning 
to eventually replace them to generate LLVM IR codes

빅데이터 분석 및 AI 처리를 위한 클라우드向 차세대 DBMS 기술


